Speckle Decorrelation and Dynamic Range in Speckle Noise Limited Imaging

نویسنده

  • Anand Sivaramakrishnan
چکیده

The useful dynamic range of an image in the diffraction limited regime is usually limited by speckles caused by residual phase errors in the optical system forming the image. The technique of speckle decorrelation involves introducing many independent realizations of additional phase error into a wavefront during one speckle lifetime, changing the instantaneous speckle pattern. A commonly held assumption is that this results in the speckles being ‘moved around’ at the rate at which the additional phase screens are applied. The intention of this exercise is to smooth the speckles out into a more uniform background distribution during their persistence time, thereby enabling companion detection around bright stars to be photon noise limited rather than speckle-limited. We demonstrate analytically why this does not occur, and confirm this result with numerical simulations. We show that the original speckles must persist, and that the technique of speckle decorrelation merely adds more noise to the original speckle noise, thereby degrading the dynamic range of the image. Subject headings: instrumentation: adaptive optics — methods: analytical — methods: numerical — space vehicles: instruments — techniques: image processing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

A Bayesian Joint Decorrelation and Despeckling approach for speckle reduction of SAR Images

In this paper, we present a novel approach for joint decorrelation and despeckling of synthetic aperture radar (SAR) imagery. An iterative maximum a posterior estimation is performed to obtain the correlation and speckle-free SAR data, which incorporates a correlation model which realistically explores the physical correlated process of speckle noise on signal in SAR imaging. The correlation mo...

متن کامل

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

Simultaneous measurement of water flow velocity with fluorescent and speckle imaging technique

The average velocity of water flow has been simultaneously measured with fluorescent and speckle imaging methods. The measured velocities with two methods are in good agreement with each other and it confirms that the speckle imaging method can be used as a confident method to measure the velocity of water flow in a dry leaf. Also the velocity of water flow through thick and thin xylems of a le...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution

Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002